首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57695篇
  免费   4650篇
  国内免费   3328篇
  2024年   40篇
  2023年   683篇
  2022年   831篇
  2021年   1414篇
  2020年   1424篇
  2019年   1765篇
  2018年   1736篇
  2017年   1336篇
  2016年   1461篇
  2015年   2100篇
  2014年   3034篇
  2013年   4088篇
  2012年   2241篇
  2011年   3074篇
  2010年   2473篇
  2009年   3071篇
  2008年   3318篇
  2007年   3344篇
  2006年   3080篇
  2005年   3014篇
  2004年   2640篇
  2003年   2328篇
  2002年   2169篇
  2001年   1451篇
  2000年   1215篇
  1999年   1284篇
  1998年   1178篇
  1997年   949篇
  1996年   781篇
  1995年   1014篇
  1994年   920篇
  1993年   831篇
  1992年   723篇
  1991年   532篇
  1990年   442篇
  1989年   393篇
  1988年   408篇
  1987年   361篇
  1986年   303篇
  1985年   344篇
  1984年   463篇
  1983年   309篇
  1982年   306篇
  1981年   193篇
  1980年   178篇
  1979年   154篇
  1978年   91篇
  1977年   52篇
  1976年   46篇
  1975年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane‐associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo‐electron microscopy (cryo‐EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ~20 nm inner diameter and a few microns in length, that self‐assemble in aqueous solutions. The lipid nanodisks (NDs) are self‐assembled discoid lipid bilayers of ~10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane‐associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane‐bound coagulation factor VIII in vitro for structure determination by cryo‐EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three‐dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane‐associated proteins and complexes for structural studies by cryo‐EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane‐associated proteins, such as the coagulation factors, at a close to physiological environment. Proteins 2014; 82:2902–2909. © 2014 Wiley Periodicals, Inc.  相似文献   
42.
43.
The CHAPS-PAGE gelsystem we applied gave a good separation of the proteins of Bacteroides fragilis under non-denaturing conditions. We succeeded with preparative CHAPS-PAGE in purifying an iron regulated outer membrane protein (a 44 kDa polypeptide on SDS-PAGE) of B. fragilis. This integral membrane protein proved to be a lipopolysaccharide binding protein with an isoelectric point of approximately pH 5.5. This method of purifying membrane proteins could be an important step in research into the function of membrane proteins.  相似文献   
44.
《Current biology : CB》2020,30(24):4826-4836.e7
  1. Download : Download high-res image (141KB)
  2. Download : Download full-size image
  相似文献   
45.
Abstract The 3D gene of foot-and-mouth disease virus encodes the viral RNA dependent RNA polymerase, also called virus infection associated (VIA) antigen, which is the most important serological marker of virus infection. This 3D gene from a serotype Cl virus has been cloned and overexpressed in Escherichia coli under the control of the strong lambda lytic promoters. The resulting 51 kDa recombinant protein has been shown to be immunoreactive with sera from infected animals. After induction of gene expression, an immediate and dramatic arrest of cell DNA synthesis occurs, similar to that produced by genotoxic doses of the drug mitomycin C. This effect does not occur during the production of either a truncated VIA antigen or other related and non-related viral proteins. The inhibition of DNA replication results in a subsequent induction of the host SOS DNA-repair response and in an increase of the mutation frequency in the surviving cells.  相似文献   
46.
《Current biology : CB》2020,30(12):2386-2394.e4
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   
47.
Human T cell lymphotropic virus type 1 (HTLV-1) is a human retrovirus that infects approximately 10–20 million people worldwide and causes an aggressive neoplasia (adult T-cell leukemia/lymphoma - ATL). Therapeutic approaches for the treatment of ATL have variable effectiveness and poor prognosis, thus requiring strategies to identify novel compounds with activity on infected cells. In this sense, we initially screened a small series of 25 1,2,3-triazole derivatives to discover cell proliferation inhibitors and apoptosis inducers in HTLV-1-infected T-cell line (MT-2) for further assessment of their effect on viral tax activity through inducible-tax reporter cell line (Jurkat LTR-GFP). Eight promising compounds (02, 05, 06, 13, 15, 21, 22 and 25) with activity ≥70% were initially selected, based on a suitable cell-based assay using resazurin reduction method, and evaluated towards cell cycle, apoptosis and Tax/GFP expression analyses through flow cytometry. Compound 02 induced S phase cell cycle arrest and compounds 05, 06, 22 and 25 promoted apoptosis. Remarkably, compounds 22 and 25 also reduced GFP expression in an inducible-tax reporter cell, which suggests an effect on Tax viral protein. More importantly, compounds 02, 22 and 25 were not cytotoxic in human hepatoma cell line (Huh-7). Therefore, the discovery of 3 active and non-cytotoxic compounds against HTLV-1-infected cells can potentially contribute, as an initial promising strategy, to the development process of new drugs against ATL.  相似文献   
48.
  • Mitochondrial function is critical for cell vitality in all eukaryotes including plants. Although plant mitochondria contain many proteins, few have been studied in the context of plant development and physiology.
  • We used knock‐down mutant RPS9M to study its important role in male gametogenesis and seed development in Arabidopsis thaliana.
  • Knock‐down of RPS9M in the rps9m‐3 mutant led to abnormal pollen development and impaired pollen tube growth. In addition, both embryo and endosperm development were affected. Phenotype analysis revealed that the rps9m‐3 mutant contained a lower amount of endosperm and nuclear proteins, and both embryo cell division and embryo pattern were affected, resulting in an abnormal and defective embryo. Lowering the level of RPS9M in rps9m‐3 affects mitochondrial ribosome biogenesis, energy metabolism and production of ROS.
  • Our data revealed that RPS9M plays important roles in normal gametophyte development and seed formation, possibly by sustaining mitochondrial function.
  相似文献   
49.
50.
The oncoprotein murine double minute 2 (MDM2) is an E3 ligase that plays a prominent role in p53 suppression by promoting its polyubiquitination and proteasomal degradation. In its active form, MDM2 forms homodimers as well as heterodimers with the homologous protein murine double minute 4 (MDMX), both of which are thought to occur through their respective C-terminal RING (really interesting new gene) domains. In this study, using multiple MDM2 mutants, we show evidence suggesting that MDM2 homo- and heterodimerization occur through distinct mechanisms because MDM2 RING domain mutations that inhibit MDM2 interaction with MDMX do not affect MDM2 interaction with WT MDM2. Intriguingly, deletion of a portion of the MDM2 central acidic domain selectively inhibits interaction with MDM2 while leaving intact the ability of MDM2 to interact with MDMX and to ubiquitinate p53. Further analysis of an MDM2 C-terminal deletion mutant reveals that the C-terminal residues of MDM2 are required for both MDM2 and MDMX interaction. Collectively, our results suggest a model in which MDM2-MDMX heterodimerization requires the extreme C terminus and proper RING domain structure of MDM2, whereas MDM2 homodimerization requires the extreme C terminus and the central acidic domain of MDM2, suggesting that MDM2 homo- and heterodimers utilize distinct MDM2 domains. Our study is the first to report mutations capable of separating MDM2 homo- and heterodimerization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号